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Differentially Private Bipartite Consensus over
Signed Networks with Time-Varying Noises
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Abstract— This paper investigates the differentially pri-
vate bipartite consensus problem over signed networks. To
solve this problem, a new algorithm is proposed by adding
noises with time-varying variances to the cooperative-
competitive interactive information. In order to achieve the
privacy protection, the variances of the added noises are
allowed to increase, which are substantially different from
the existing works. In addition, the variances of the added
noises can be either decaying or constant. By using a time-
varying step-size based on the stochastic approximation
method, we show that the algorithm converges in mean-
square and almost-surely even with increasing privacy
noises. We further develop a method to design the step-size
and the noise parameter, affording the algorithm to achieve
the average bipartite consensus with the desired accuracy
and the predefined differential privacy level. Moreover, we
give the mean-square and almost-sure convergence rates
of the algorithm, and the privacy level with different forms
of the privacy noises. We also reveal the trade-off between
the accuracy and the privacy, and extend the results to local
differential privacy. Finally, a numerical example verifies
the theoretical results and demonstrates the algorithm’s
superiority against existing methods.

Index Terms— Multi-agent system; differential privacy;
signed network; stochastic approximation; convergence
rate.

I. INTRODUCTION

D ISTRIBUTED consensus control of multi-agent systems
(MASs) is significant due to its numerous applications,

such as energy internet [1], [2], cooperative guidance systems
[3], and social networks [4]. Generally, it refers to designing
a network protocol such that all agents asymptotically reach
an agreement. To date, many works have been developed on
the consensus control of MASs, including average consensus
[5]–[11], max consensus [12], group consensus [13], [14],
and bipartite consensus [15]–[19]. Among others, cooperative
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and competitive interactions exist simultaneously in many
complex systems, such as social networks, duopolistic mar-
kets in economic systems, teams opposed in a sports match,
competing international alliances, biology systems, and two-
party political systems [15], [20], [21]. For example, in social
networks, each agent controls a time-dependent state variable,
which denotes its opinion on some issue. Each agent updates
its opinion based on its own current opinion, the current
opinions of its neighbors, and its relationships (friendship
or antagonism) with its neighbors. For those neighbors with
friendship, the agent trusts their opinions; for those neighbors
with antagonism, the agent does not trust their opinions,
and takes the opposite of their opinions in updating. For
modeling such networks, signed graph theory and bipartite
consensus problems were formulated in [15], where the agents
achieved an agreement with identical values but opposite signs.
Currently, some substantial progresses have been made for
bipartite consensus control of MASs [15]–[18], [20], [21].

With the increasing need for privacy and security, pre-
serving the privacy of data is required in many applications.
For example, in social networks [22], exchanging opinions
probably reveals individual privacy when potential attackers
exist. Thus, privacy-preserving in social networks has become
a hot research topic. In cooperative guidance systems [3],
information interactions may expose the missiles’ and the
launch stations’ location. Hence, a naturally arising problem
is how to achieve a bipartite consensus while protecting each
agent’s sensitive information from being inferred by potential
attackers.

To address the requirement for privacy protection in dis-
tributed control, some methods have been proposed recently
to counteract such potential privacy breaches, such as homo-
morphic encryption [23], [24], adding noises [25]–[27], time-
varying transformation [28], [29], and state decomposition
[30]. Homomorphic encryption allows direct calculation of
encrypted data without revealing any information about the
original text. But, such approaches incur a heavy commu-
nication and computation overhead. Accurate consensus is
achieved by adding correlated noises to interaction information
while protecting the initial states from semi-honest agents
[25]–[27]. However, if the potential passive attackers obtain
the information received and delivered by an agent, then
this agent’s initial state can be estimated through an iterative
observer under such correlated noises mechanism. Generally
speaking, current methods considering privacy preservation in
average consensus assume that the honest-but-curious adver-
sary cannot access the entire neighborhood set of an agent
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[23], [25], [28], [30].
Differential privacy techniques have been widely considered

when publishing data from many technology companies, such
as Google and Apple. Based on the original definition given
by [31], ε-differential privacy has been extended to the multi-
agent scenario, including protecting the agent’s initial states
in a consensus problem [32], protecting the objection function
in distributed optimization [33], [34] and games [35], and
protecting the global state trajectories in Kalman filtering
[36], [37]. From a system control perspective, a tutorial
and comprehensive framework of privacy security on control
systems is provided in [38]. By adding uncorrelated noises
on information, a differentially private consensus algorithm is
designed for discrete-time MASs, where agents achieve unbi-
ased convergence to the average almost-surely [39], [40]. In
particular, it is interesting to know that adding one-shot noise
at the beginning can achieve the optimal privacy and accuracy
trade-off [39]. An ε-differentially private consensus algorithm
is designed in [41] for continuous-time heterogeneous MASs,
while an event-triggered scheme is proposed in [42] to reduce
the control updates and ensure the ε-differentially private of
the algorithm. Overall, the above-mentioned literature has two
common grounds: 1) all algorithms are designed for average
consensus, and 2) in order to guarantee the convergence and
satisfy the differential privacy level, the privacy noises are
required to be decaying exponentially to zero (or constant)
with time. In fact, the interaction between practical systems
involves cooperation and competitiveness simultaneously. Al-
though the differential privacy bipartite consensus over signed
graphs is considered, the privacy noises with exponential decay
to zero are required in [43], [44]. Note that decaying noises to
zero potentially exposes the trajectory of the state. Then, the
following questions arise. Is it possible to give a more general
noise form for privacy-preserving distributed consensus algo-
rithm with guaranteed convergence? If possible, how do the
added privacy noises affect the algorithm’s convergence rate
and privacy level? These questions motivate us to investigate
the privacy-preserving bipartite consensus algorithm and relax
the limitation of the existing privacy noise forms.

This paper designs a new differentially private bipartite
consensus algorithm over signed networks. Specifically, each
agent adds Laplace noises on the local state, and then transmits
it to its neighbors. The added noises are with time-varying
variances (which may increase with time). If the algorithm’s
step-size α(k) satisfies the stochastic approximation condition,
then the algorithm can achieve the mean-square and almost-
sure bipartite consensus. In summary, the contributions of this
paper are fourfold:
• A new differentially private bipartite consensus algorithm

is developed, compared with the existing literature [43],
[44]. Specifically, in order to achieve privacy protection
and avoid directly exposing the information about the
state, the variances of the added noises are more general
and allowed to increase. In addition, the variances of
the added noises can be either decaying or constant, and
cover the ones in [32], [39]–[44]. By employing a time-
varying step-size based on the stochastic approximation
method, both the mean-square and almost-sure average

bipartite consensus of the algorithm are given even with
increasing privacy noises.

• Both the mean-square and almost-sure convergence rates
of the algorithm with different forms of privacy noises
are given. To the best of our knowledge, it is the first to
rigorously characterize both the mean-square and almost-
sure convergence rates of distributed consensus with
increasing noises. Even without considering privacy pro-
tection, our proof techniques fundamentally differ from
existing counterparts and are of independent interest.

• A guideline for designing the time-varying step-size and
the time-varying variances of the added noises is present-
ed such that the algorithm can achieve the average bipar-
tite consensus with the desired accuracy and predefined
differential privacy level.

• The trade-off between the accuracy and the privacy is
shown. When the variances of the added noises increase,
both the mean-square average bipartite consensus and
differential privacy with a finite privacy level over the
infinite time horizon are established. Hence, our algorith-
m is effective for protecting the infinite time sequences of
the state with guaranteed convergence, which is superior
to the algorithms in [32], [39], [40], [42]–[44].

It is worth noting that this paper’s results are significantly
different from the literature. A comparison with the state-of-
the-art is given as follows. Regarding the noise-perturbation
approaches, we remove the conditions requiring the added
noises are exponentially decaying [32], [39], [40], [42]–[44],
or with constant variance [41]. Furthermore, compared with
[45] only considering eavesdroppers, we consider eavesdrop-
pers and honest-but-curious agents simultaneously. Compared
with [23], [25], [28], [30], we remove the condition requiring
that the adversary has no access to a target agent’s communica-
tions with all of its neighbors, and hence, protect a more robust
privacy of agents regardless of any auxiliary information an
adversary may have. Compared with [7], [9]–[11], we consider
the increasing noises case, and obtain both mean-square and
almost-sure convergence rates of the algorithm. Moreover, we
generalize communication topologies from unsigned graphs
[25], [26], [39]–[42] to a class of signed graphs.

This paper is organized as follows. Section II provides the
preliminaries and the problem statement. Section III intro-
duces the algorithm’s convergence and privacy analysis, while
Section IV presents a numerical example. Finally, Section V
concludes this work.

Notation. Denote R, N as the sets of the real numbers
and nonnegative integers, respectively. Let Rn be the n-
dimensional real space, and Rn×m be a set of n × m real
matrices. In represents n × n identity matrix and 1n is an
n-dimension column vector with all elements being 1. The
notation diag(b1, ..., bN ) denotes the diagonal matrix with
diagonal elements b1, . . . , bN . For a random variable X ∈ R,
EX and Var(X) denote the expectation and variance of X ,
respectively. Lap(µ, b) denotes the Laplace distribution with
mean µ and scale parameter b. Γ(x) =

∫ +∞
0

tx−1e−tdt is
the gamma function and Γ(x, z) =

∫ +∞
z

tx−1e−tdt is the
upper incomplete gamma function. For sequences {f(k), k =
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0, 1, ...} and {g(k), k = 0, 1, ...}, f(k) = O(g(k)) means that
there exist positive A and k0 such that | f(k)g(k) | ≤ A for all
k > k0. For any x ∈ R, sgn(x) is the sign function defined as
sgn(x) = 1 if x > 0; −1 if x < 0; and 0 if x = 0. For square
matrices Al, . . . , Ak, denote

∏k
i=lAi = Ak · · ·Al for k ≥ l

and
∏k
i=k+1Ai = In. For x ∈ Rn, ‖x‖1 =

∑n
i=1 |xi|, ‖x‖ =√∑n

i=1 x
2
i .

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph theory

Let G = (V, E ,A) be an undirected signed graph with a
set of agents V = {1, 2, . . . , N}, a set of edges E ∈ V × V ,
and a weighted adjacency matrix A = (aij)N×N . Agent i
represents the i-th system, and an edge eji in the graph is
denoted by the ordered pair agents {j, i}. {j, i} ∈ E if and
only if Agent i can obtain the information from Agent j. For
the adjacency matrix A, aij 6= 0 if {j, i} ∈ E , and aij = 0,
otherwise. Specifically, the interaction between Agents i and
j is cooperative if aij > 0, and competitive if aij < 0. We
assume there is no self-loop in the graph G, i.e., aii = 0.
Let Ni = {j| {j, i} ∈ E} be the set of Agent i’s neighbors.
The Laplacian matrix L = (lij)N×N of graph G is defined as
lii =

∑N
k=1,k 6=i |aik| and lij = −aij if i 6= j. We denote ci =∑

j∈Ni |aij | as the degree of Agent i. For a signed graph, we
define the greatest degree and the smallest degree as cmax =
max{ci, i ∈ V} and cmin = min{ci, i ∈ V}. Furthermore,
structural balance is defined as follows.

Definition 2.1 (Structural balance, [15]): A signed graph
G is structurally balanced if V can be divided into two disjoint
subsets V1 and V2 (i.e., V1

⋃
V2 = V and V1

⋂
V2 = ∅) such

that aij ≥ 0 for ∀i, j ∈ Vh(h ∈ {1, 2}), and aij ≤ 0 for
∀i ∈ Vh, j ∈ Vq, h 6= q, (h, q ∈ {1, 2}).

Assumption 2.1: The signed graph G is connected and
structurally balanced.

Remark 2.1: Assumption 2.1 is an important assumption on
the signed graph G, which is commonly used to ensure the
bipartite consensus [15]–[18]. From Definition 2.1, a graph
is still said to be structurally balanced if V1 or V2 is empty.
Obviously, the graph with nonnegative weights in traditional
consensus problem [32], [39] satisfies Assumption 2.1.

Lemma 2.1 ([15]): If Assumption 2.1 holds, then

1) A diagonal matrix S = diag(s1, s2, . . . , sN ) exists, such
that SAS has all nonnegative elements, where si ∈
{1,−1}, for all i ∈ V .

2) The Laplacian matrix associated with the corresponding
unsigned graph LS = SLS is positive semi-definite.

3) The eigenvalue λk(L), k = 1, 2, . . . , N of the Laplacian
matrix L satisfies 0 = λ1(L) < λ2(L) ≤ . . . ≤ λN (L).

Remark 2.2: Under Assumption 2.1, we have 1TNSL = 0.
In particular, if S = I , then the problem studied in this paper
is reduced to the traditional consensus problem [32], [39].
Besides, although we consider the undirected graph case here,
it is not difficult to extend it to the digraph case [5].

B. Problem formulation

Consider a set of N agents coupled by an undirected signed
graph G. The dynamics of the i-th agent are as follows

xi(k + 1) = xi(k) + ui(k), (1)

where xi(k) ∈ R is the state of Agent i with initial value
xi(0), and ui(k) ∈ R is the control input. To achieve the
bipartite consensus of the system (1), [16] designs the fol-
lowing distributed controller: ui(k) = −

∑
j∈Ni |aij |(xi(k)−

sgn(aij)xj(k)), where xj(k) is the information that Agent i
receives from its neighbors j.

In distributed bipartite consensus, eavesdroppers or honest-
but-curious (semi-honest) agents may exist in the network
[29], [35]. Note that the honest-but-curious agents might
collude and attempt to deduce information about the initial
state values of the other honest agents from the information
they receive. Eavesdroppers are external adversaries who steal
information through wiretapping all communication channels
and intercepting exchanged information between agents. An
honest-but-curious agent i has access to the internal state
xi, which is unavailable to external eavesdroppers. However,
an eavesdropper has access to all shared information in the
network, whereas an honest-but-curious agent can only access
the shared information destined to it. These two attacker types
are collectively called passive attackers. If the network has
passive attackers, then delivering {xi(k)|k ≥ 0} directly for
each agent may leak its privacy, including the state xi(k) and
the initial opinion or belief xi(0). Therefore, direct communi-
cation of intermediate results in the above controller can lead
to severe privacy leakage of each agent’s sensitive information.
It is imperative to provide a theoretical privacy guarantee on
each agent’s sensitive information. To do so, each agent i sends
to its neighbors the masking information yi(k) instead of the
original information xi(k).

C. Differential privacy

A mechanism M(·) is a stochastic map from a private
dataset D to an observation O. In this paper, we focus on
protecting the initial states of each agent against passive
attackers. Thus, the private dataset is D = {xi(0), i ∈ V},
and the observation is O = {yi(k), i ∈ V}Tk=0 with the time
horizon T ≥ 1. Then, we introduce the ε-differential privacy
for the private dataset.

Definition 2.2 ([39]): Given δ > 0, the initial states D =
{xi(0), i ∈ V} and D′ = {x′i(0), i ∈ V} are δ-adjacent if
there exists i0 ∈ V , such that

|xi(0)− x′i(0)| ≤

{
δ if i = i0;

0 if i 6= i0.
Based on the above definition, inspired by [36] and [39], a

definition of differential privacy is given for the differentially
private bipartite consensus as follows.

Definition 2.3 (Differential privacy): Given δ > 0, a mech-
anism M(·) is ε-differentially private if P{M(D) ∈ O} ≤
eεP{M(D′) ∈ O} holds for any two δ-adjacent initial state
sets D = {xi(0), i ∈ V}, D′ = {x′i(0), i ∈ V} and an
observation set O ⊆ (RN )N.
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By Definition 2.3, the privacy level ε is non-negative, and
a smaller ε corresponds to a stronger privacy protection.

Next, the mean-square average bipartite consensus, almost-
sure average bipartite consensus, and (m, r)-accuracy are
defined as follows, respectively.

Definition 2.4 (Mean-square average bipartite consensus):
The system (1) is said to achieve the mean-square average
bipartite consensus if there exists a random variable x?

with Ex? = 1
N

∑N
i=1 sixi(0), E[x?]2 < ∞, such that

limk→∞ E[xi(k)− six?]2 = 0, si ∈ {1,−1},∀ i ∈ V.
Definition 2.5 (Almost-sure average bipartite consensus):

The system (1) is said to achieve the almost-sure average
bipartite consensus if there exists a random variable x?

with Ex? = 1
N

∑N
i=1 sixi(0), E[x?]2 < ∞, such that

limk→∞ xi(k) = six
?, si ∈ {1,−1},∀ i ∈ V.

Definition 2.6 (Accuracy): For m ∈ [0, 1] and r > 0,
the system (1) is said to achieve an (m, r)-accuracy, if the
mean-square and almost-sure average bipartite consensus is
achieved, and the x? in Definition 2.4 (or 2.5) satisfies P{|x?−
1
N

∑N
i=1 sixi(0)| ≤ r} ≥ 1−m.

Problems of interest: In this paper, the following questions
are answered:
• How to design a more general privacy noise form for

average bipartite consensus to achieve a better privacy
protection with guaranteed convergence?

• What are the mean-square and almost-sure convergence
rates under the influence of privacy noises?

• How to design the distributed protocol ui(k) and privacy
noises for the desired accuracy (m?, r?) and predefined
differential privacy level ε??

III. MAIN RESULT

This section first presents the convergence analysis, ensur-
ing that the mean-square and almost-sure average bipartite
consensus is achieved under certain conditions. In addition
to the mean-square and almost-sure convergence rates, the
privacy analysis is also given by introducing the definition
of the sensitivity on private datasets. Finally, we discuss the
trade-off between accuracy and privacy, and extend the results
to local differential privacy.

A. Algorithm
This subsection introduces a differentially private bipartite

consensus algorithm, which is given in Algorithm 1.
Set

x(k) =
[
x1(k) x2(k) . . . xN (k)

]T
,

y(k) =
[
y1(k) y2(k) . . . yN (k)

]T
,

ω(k) =
[
ω1(k) ω2(k) . . . ωN (k)

]T
.

Then, the equation (4) can be rewritten in a compact form as
follows:

x(k + 1) = (IN − α(k)L)x(k) + α(k)Aω(k). (5)

Remark 3.1: In order to achieve the privacy protection, we
add noises to Agent i’s state before transmitting it to its
neighbors. Different from the existing literature, the privacy

Algorithm 1 A differentially private bipartite consensus algo-
rithm
Input: Initial state sequence {xi(0)}, step-size sequence
{α(k)}, and noise parameter sequence {b(k)}.
Output: State sequence {xi(k)}.
for k = 0, 1, ..., do
• Information transmission: Each agent i generates a privacy
noise ωi(k) with distribution Lap(0, b(k)), and sends to its
neighbors the following information instead of the original
information xi(k).

yi(k) = xi(k) + ωi(k), i ∈ V, k ∈ N, (2)

• State update: Each agent i receives yj(k) from its neighbor
j and updates its own state by using the following privacy-
preserving distributed controller:

ui(k) = −α(k)
∑
j∈Ni

|aij |(xi(k)− sgn(aij)yj(k)), (3)

where α(k) is a positive time-varying step-size. Then, each
agent i updates its own state as follows.

xi(k + 1) = xi(k)− α(k)
∑
j∈Ni

|aij |(xi(k)− sgn(aij)yj(k)).

(4)

end for

noises added in (2) are more general. Specifically, the privacy
noises used in this paper are random with variances of 2b2(k),
which are not required to decay to zero. Therefore, the state’s
information is not directly inferred with time. However, this
brings convergence difficulties with the corresponding privacy
analysis described next. Moreover, it is worth noting that we
employ a time-varying step-size α(k), making the controller
more flexible than that utilizing a constant step-size. Note that
if α(k) is set to constant, as in current literature, the above
closed-loop system cannot achieve the convergence because
of the influence of privacy noises. To this end, we apply
the stochastic approximation method to design a time-varying
step-size.

B. Convergence analysis
This subsection first proves that Algorithm 1 can achieve

the mean-square and almost-sure average bipartite consensus.
Then, we provide a method to design the step-size α(k) and
the noise parameter b(k) to ensure the (m?, r?)-accuracy.

For the step-size α(k) and the noise parameter b(k), we
give the following assumption.

Assumption 3.1: The step-size α(k) and the noise parame-
ter b(k) are positive and satisfy one of the following condi-
tions:
a) supk α(k)≤ 1

λN (L) ,
∞∑
k=0

α(k)=∞, lim
k→0

α(k)b2(k) = 0;

b) supk α(k)≤ 1
λN (L) ,

∞∑
k=0

α(k)=∞,
∞∑
k=0

α2(k)b2(k) <∞.

Remark 3.2: Assumption 3.1 a) is weaker than Assumption
3.1 b). For example, if we take α(k) = a1

(k+a2)β
with a

sufficiently small a1 and β ∈ [0, 1], and b(k) = (k + a2)γ ,
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then Assumption 3.1 a) holds when 2γ < β. Assumption 3.1
b) holds when 2γ < 2β − 1. Especially, when b(k) is a con-
stant, Assumption 3.1 becomes the commonly used stochastic
approximation step-size [7]. Furthermore, when the step-size
α(k) is a constant, and the privacy noises decay exponentially
to zero [32], [39], [40], [42]–[44], Assumption 3.1 still holds.

Remark 3.3: The step-size α(k) and the noise parameter
b(k) are assumed to be same for all agents in Algorithm 1. Its
practical implementation is an issue worthy of attention. This
issue can be solved by implementing the following protocol
before running Algorithm 1. Firstly, different a1,i, a2,i, βi,
and γi are chosen by the agents. Secondly, a consensus
protocol (e.g., finite-time average consensus protocol [8] or
max-consensus protocol [12]) is applied to obtain the same
a1, a2, β, and γ. Thirdly, set α(k) = a1

(k+a2)β
and b(k) =

(k + a2)γ .
To get the convergence results, the following independence

assumption on the privacy noises is required.
Assumption 3.2: ωi(k) and ωj(l) are independent when i 6=

j or k 6= l.
Theorem 3.1: If Assumptions 2.1, 3.1 a), and 3.2 hold, then

limk→∞ E[sixi(k)− sjxj(k)]2 = 0, ∀ i, j ∈ V .
Proof : Let z(k) = Sx(k) and LS = SLS. Then, from (5) and
S−1 = S it follows that

z(k + 1) = (IN − α(k)LS) z(k) + α(k)SAω(k). (6)

Let J = (1/N)1N1TN , δ(k) = (IN − J)z(k) and V (k) =
‖δ(k)‖2. Note that 1TNLS = 0. Then, LSJ = 0, and from (6)
we further have

δ(k + 1)

=(IN − J)z(k + 1)

=z(k)− α(k)LSz(k) + α(k)SAω(k)

− Jz(k)− α(k)JSAω(k)

=δ(k)− α(k)LSz(k) + α(k)(IN − J)SAω(k)

=
[
IN − α(k)LS

]
δ(k) + α(k)(IN − J)SAω(k).

Note that Jδ(k) = 0. Then, we have

δ(k + 1)

=
[
IN − J − α(k)LS

]
δ(k) + α(k)(IN − J)SAω(k). (7)

Since λ2(LS) = λ2(L) and λN (LS) = λN (L), from Theorem
2.1 in [7], we have λ2(L)(IN − J) ≤ LS ≤ λN (L)(IN − J).
Note that supk α(k) ≤ 1

λN (L) . Then, IN − J − α(k)LS ≥
(1− α(k)λN (L))(IN − J) ≥ 0. From (7), we have

V (k + 1)

≤
[
1− α(k)λ2(L)

]2
V (k)

+ 2α(k)δT (k)
[
IN − J − α(k)LS

]T
(IN − J)SAω(k)

+ α2(k)wT (k)ATST (IN − J)T (IN − J)SAω(k).

Define σ-algebra Fωk = σ{ω(0), ω(1), ω(2), . . . , ω(k − 1)}.
Note that ω(k) is the zero-mean noise. Then, taking the
conditional expectation with respect to Fωk on both sides of
the above equations, one can get

E [V (k + 1)|Fωk ]

≤
[
1− α(k)λ2(L)

]2
V (k) + 2α2(k)b2(k)N‖A‖2. (8)

Note that E [E [V (k + 1)|Fωk ]] = EV (k + 1). Then, taking
mathematical expectation on both sides of (8), we obtain

EV (k + 1)

≤
[
1− α(k)λ2(L)

]2EV (k) + 2α2(k)b2(k)N‖A‖2

≤EV (k)− α(k)λ2(L)EV (k) + 2α2(k)b2(k)N‖A‖2. (9)

Then, by Lemma A.1 of [7], we have EV (k) = 0, which
further implies the result. �

Theorem 3.2: If Assumptions 2.1, 3.1 b), and 3.2 hold,
then Algorithm 1 achieves the mean-square average bipartite
consensus with Var(x?) =

2
∑
i∈V c

2
i

N2

∑∞
k=0 α

2(k)b2(k).
Proof : Since the graph is structurally balanced, from Lem-
ma 2.1, it follows that 1TNLS = 0, and

1TNz(k) = (1TN (IN − α(k − 1)LS))z(k − 1)

+ α(k − 1)(1TNSA)ω(k − 1)

= 1TNz(k − 1) + α(k − 1)(1TNSA)ω(k − 1). (10)

By iteration, we have

1TNz(k) =
∑
i∈V

zi(0) +

k∑
j=1

α(j − 1)(1TNSA)ω(j − 1), (11)

which immediately follows that

lim
k→∞

1TNz(k) =
∑
i∈V

zi(0) +

∞∑
j=1

∑
i∈V

α(j − 1)siciωi(j − 1).

By Theorem 3.1, set

x? =
1

N

∑
i∈V

zi(0) +
1

N

∞∑
j=1

∑
i∈V

α(j − 1)siciωi(j − 1).

Then, we have

lim
k→∞

√
E [sixi(k)− x?]2

≤ lim
k→∞

√
E
[
sixi(k)− 1

N
1TNz(k)

]2
+ lim
k→∞

√
E
[

1

N
1TNz(k)− x?

]2
=0.

By the fact that ωi(k) are independent for all i ∈ V , k ∈ N,
it is obtained that

Ex? = E

 1

N

∑
i∈V

zi(0) +
1

N

∞∑
j=0

∑
i∈V

α(j)siciωi(j)


=

1

N

∑
i∈V

zi(0) =
1

N

∑
i∈V

sixi(0),

and

Var (x?) =
1

N2

∞∑
j=0

∑
i∈V

α2(j)E [siciωi(j)]
2

=
2
∑
i∈V c

2
i

N2

∞∑
k=0

α2(k)b2(k). (12)
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Since
∑∞
k=0 α

2(k)b2(k) < ∞, Var (x?) is bounded. This
completes the proof. �

Remark 3.4:
∑∞
k=0 α

2(k)b2(k) < ∞ is necessary for a
finite E[x?]2. Otherwise, when

∑∞
k=0 α

2(k)b2(k) = ∞, one
can get Var(x?) =∞ by (12).

The almost-sure convergence properties are important, be-
cause they represent what happen to individual trajectories of
the stochastic iterations, which are instantiations of the algo-
rithm actually used in practice. From the following theorem,
the almost-sure average bipartite consensus of Algorithm 1 is
achieved as well under Assumptions 2.1 and 3.1.

Theorem 3.3: If Assumptions 2.1, 3.1 b), and 3.2 hold,
then Algorithm 1 achieves the almost-sure average bipartite
consensus.
Proof : From (8) it follows that

E [V (k + 1)|Fωk ]

≤V (k)− α(k)λ2(L)V (k) + 2α2(k)b2(k)N‖A‖2.

Notice that
∑∞
k=0 α

2(k)b2(k) < ∞. Then, by Lemma A.1,
V (k) converges almost-surely, and

∑∞
k=0 α(k)V (k) < ∞

almost-surely. Since
∑∞
k=0 α(k) = ∞, V (k) converges to 0

almost-surely.
By (11), 1

N

∑N
i=1 zi(k) = 1

N 1>Nzi(k) is a martingale. By
Assumption 3.1, we have

E

∥∥∥∥∥∥
k∑
j=1

α(j − 1)(1TNSA)ω(j − 1)

∥∥∥∥∥∥
2

≤2
∥∥1TNSA∥∥2 k∑

j=1

α2(j − 1)b2(j − 1) <∞,

which implies that E
[

1
N

∑N
i=1 zi(k)

]2
< ∞. This together

with Theorem 7.6.10 of [46] and Theorem 3.2 implies that
1
N

∑N
i=1 zi(k) converges to x? almost-surely. Since V (k)

converges to 0 almost-surely, we have zi(k) converges to
1
N

∑N
i=1 zi(k) almost-surely. This proves the theorem. �

Remark 3.5: By assuming that the graph is structurally
balanced, the mean-square and almost-sure average bipartite
consensus of Algorithm 1 is achieved. The results can be
extended to the case where the graph is structurally unbal-
anced and the weighted adjacency matrix A satisfies the
signed Perron-Frobenius property [19]. In this case, there
exists t0 > 0 such that At0 is the weighted adjacency
matrix of a structurally balanced graph. The existence of t0
is ensured by Theorem 2 of [19]. In Algorithm 1, instead
of (3), each agent updates its own state by using ui(k) =
−α(k)

∑
j∈Ni |aij |(xi(k) − sgn(aij)ỹj(k)), where ỹj(k) is

the jth component of At0−1y(k). Similar to the proof of
Theorems 3.1-3.3, the mean-square and almost-sure average
bipartite consensus of the modified algorithm for the struc-
turally unbalanced graph can be achieved.

Remark 3.6: Theorems 3.1-3.3 give a unified framework of
the consensus analysis under different types of step-sizes α(k)
and noise parameters b(k), including the decaying α(k) and
constant b(k) considered in [7], [41], the constant α(k) and
exponentially decaying b(k) considered in [32], [39], [40],
[42]–[44], and the decaying α(k) and increasing b(k).

The following theorem provides a way to design the step-
size α(k) and the noise parameter b(k) to ensure the (m?, r?)-
accuracy.

Theorem 3.4: Under Assumptions 2.1, 3.1 b), and 3.2, for
any given a pair of parameters (m?, r?), if

∞∑
k=0

α2(k)b2(k) ≤ m?(r?)2N2

2
∑
i∈V c

2
i

,

then Algorithm 1 achieves the (m?, r?)-accuracy.
Proof : From the Chebyshev’s inequality [46] it follows that

P
{

(x? − Ex?)2

Var(x?)
< ε

}
≥ 1− 1

ε
.

Taking (12) into the above inequality yields
P {|x? − Ex?| <

√
εκ} ≥ 1 − 1

ε , where κ =
2
∑
i∈V c

2
i

N2

∑∞
k=0 α

2(k)b2(k).
Set r =

√
εκ. Then, ε = r2

κ and P {|x? − Ex?| < r} ≥
1 − κ

r2 . Therefore, the (m, r)-accuracy is achieved with m=
2
∑
i∈V c

2
i

N2r2

∑∞
k=0 α

2(k)b2(k).
Clearly, as long as

∑∞
k=0 α

2(k)b2(k) ≤ m?(r?)2N2

2
∑
i∈V c

2
i
, the

(m?, r?)-accuracy is ensured. �
Next, we further analyze the (m?, r?)-accuracy of Algorith-

m 1 with α(k) = a1
(k+a2)β

and b(k) = b(k + a2)γ .
Corollary 3.1: Under Assumption 2.1, for any given a pair

of parameters (m?, r?), set α(k) = a1
(k+a2)β

and b(k) = b(k+

a2)γ , β ∈ (0, 1], γ < β − 1/2, a1, a2, b > 0, such that

a21b
2a2γ−2β+1

2

2β − 2γ − 1
+ a21b

2a2γ−2β2 ≤ m?(r?)2N2

2
∑
i∈V c

2
i

. (13)

Then, Algorithm 1 achieves the (m?, r?)-accuracy.
Proof : By the fact that f(x) = a1b(x+a2)

γ

(x+a2)β
with β ∈ (0, 1],

γ < β − 1/2, a1, a2, b > 0, is a strictly decreasing function
of x > 0. Then, for k ≥ 1, we have(

a1b(k + a2)γ

(k + a2)β

)2

≤
∫ k

k−1

(
a1b(x+ a2)γ

(x+ a2)β

)2

dx,

and thus,
∞∑
k=0

α2(k)b2(k)

=a21b
2a2γ−2β2 +

∞∑
k=1

(
a1b(k + a2)γ

(k + a2)β

)2

≤a21b
2a2γ−2β2 +

∫ ∞
0

(
a1b(x+ a2)γ

(x+ a2)β

)2

dx

≤− a21b
2a2γ−2β+1

2

2γ − 2β + 1
+ a21b

2a2γ−2β2

≤m
?(r?)2N2

2
∑
i∈V c

2
i

.

This completes the proof. �
Under the time-varying noises, the predefined accuracy is

ensured by properly selecting the step-size α(k) and the noise
parameter b(k), k ∈ N. Besides, we can enhance the accuracy
by optimizing

∑∞
k=0 α

2(k)b2(k).
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C. Convergence rate

In this subsection, we analyze the mean-square and almost-
sure convergence rates of Algorithm 1. Regarding the algorith-
m’s step-size and noise parameter, we give a step-size form
α(k) = a1

(k+a2)β
and the noise parameter b(k) = O(kγ). First,

we give the mean-square convergence rate of Algorithm 1 with
α(k) = a1

(k+a2)β
and b(k) = O(kγ).

Theorem 3.5: Suppose Assumptions 2.1 and 3.2 hold. Let
the step-size α(k) = a1

(k+a2)β
, b(k) = O(kγ), β ∈ (0, 1],

γ < β − 1
2 , a1, a2 > 0. Then, the mean-square convergence

rate of Algorithm 1 is given as follows.
When β ∈ (0, 1), for all i ∈ V , we have

E [xi(k)− six?]2 = O
(
k1+2γ−2β) . (14)

When β = 1, for all i ∈ V , we have

E [xi(k)− six?]2

=

 O
(
k−2a1λ2(L)

)
, γ + a1λ2(L) < 1/2;

O
(
k2γ−1 ln k

)
, γ + a1λ2(L) = 1/2;

O
(
k2γ−1

)
, γ + a1λ2(L) > 1/2.

(15)

Proof : For analyzing the mean-square convergence rate of
Algorithm 1, we do it in the following three steps.

Step 1: We give the mean-square convergence rate of
sixi(k) − 1

N 1TNz(k). When α(k) = a1
(k+a2)β

and b(k) =

O(kγ), β ∈ (0, 1], γ < β − 1
2 , there exists % > 0 such that

2α2(k)b2(k)N‖A‖2 ≤ %

(k + a2)2β−2γ
. (16)

Note that there exists a sufficiently large k0 > 0 such that
1 − 2a1λ2(L)

(k+a2)β
> 0 for all k > k0. Then, from (9) and (16) it

follows that

EV (k + 1) ≤
(

1− 2a1λ2(L)

(k + a2)β
+

a21λ
2
2(L)

(k + a2)2β

)
EV (k)

+
%

(k + a2)2β−2γ
, as k > k0.

Iterating the above process gives

EV (k + 1)

≤
k∏

t=k0

(
1− 2a1λ2(L)

(t+ a2)β
+

a21λ
2
2(L)

(t+ a2)2β

)
EV (k0)

+

k−1∑
l=k0

k∏
t=l+1

(
1− 2a1λ2(L)

(t+ a2)β
+

a21λ
2
2(L)

(t+ a2)2β

)
%

(l + a2)2β−2γ

+
%

(k + a2)2β−2γ
. (17)

When β = 1, from Lemma A.2 and (17) it follows that

EV (k + 1)

=O

(
1

(k + a2)2a1λ2(L)

)
+O

(
1

(k + a2)2−2γ

)
+O

(
1

(k + a2)2a1λ2(L)

k−1∑
l=k0

1

(l + a2)2−2γ−2a1λ2(L)

)
.

Note that
k−1∑
l=k0

1

(l + a2)2−2γ−2a1λ2(L)

≤
∫ k

k0−1

1

(x+ a2)2−2γ−2a1λ2(L)
dx.

Then, we have

EV (k + 1)

=

 O
(
(k + a2)−2a1λ2(L)

)
, γ + a1λ2(L) < 1/2;

O
(
(k + a2)2γ−1 ln k

)
, γ + a1λ2(L) = 1/2;

O
(
(k + a2)2γ−1

)
, γ + a1λ2(L) > 1/2.

(18)

When 0 < β < 1, there exists a sufficiently large k1 ≥ k0
such that for all k ≥ k1, − 2a1λ2(L)

(k+a2)β
+

a21λ
2
2(L)

(k+a2)2β
≤ − a1λ2(L)

(k+a2)β
.

Note that (1 − a1λ2(L)
(l+a2)β

)−1 ≤ 2 for all l ≥ k1. Then, from
Lemma A.2 and (17) it follows that

EV (k + 1)

≤
k∏

t=k1

(
1− a1λ2(L)

(t+ a2)β

)
EV (k1) +

%

(k + a2)2β−2γ

+ 2

k−1∑
l=k1

k∏
t=l

(
1− a1λ2(L)

(t+ a2)β

)
%

(l + a2)2β−2γ

=O

(
exp

(
−a1λ2(L)

1− β
(k + a2 + 1)1−β

))
+O

(
1

(k + a2)2β−2γ

)
+O

(
k−1∑
l=k1

exp

(
−a1λ2(L)

1− β
(k + a2 + 1)1−β

)
· exp

(
a1λ2(L)

1− β
(l + a2)1−β

)
%

(l + a2)2β−2γ

)
. (19)

Note that β−2γ
a1λ2(L)(l+a2)1−β <

1
2 for all l ≥ k1. Then, we have

k−1∑
l=k1

exp

(
a1λ2(L)

1− β
(l + a2)1−β

)
%

(l + a2)2β−2γ

≤
∫ k

k1

exp

(
a1λ2(L)

1− β
(l + a2)1−β

)
%

(l + a2)2β−2γ
dl

=
1

a1λ2(L)

∫ k

k1

%

(l + a2)β−2γ
d
(

exp

(
a1λ2(L)

1− β
(l + a2)1−β

))
≤ 1

a1λ2(L)

%

(k + a2)β−2γ
exp

(
a1λ2(L)

1− β
(k + a2)1−β

)
+

1

2

∫ k

k1

exp

(
a1λ2(L)

1− β
(l + a2)1−β

)
%

(l + a2)2β−2γ
dl.

Furthermore, we have

k−1∑
l=k1

exp

(
a1λ2(L)

1− β
(l + a2)1−β

)
%

(l + a2)2β−2γ

=O

(
1

(k + a2)β−2γ
exp

(
a1λ2(L)

1− β
(k + a2)1−β

))
.
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From (19) it follows that

EV (k + 1)

=O

(
1

(k + a2)2β−2γ

)
+O

(
exp

(
−a1λ2(L)

1− β
(k + a2 + 1)1−β

)
· 1

(k + a2)β−2γ
exp

(
a1λ2(L)

1− β
(k + a2)1−β

))
.

=O
(
(k + a2)2γ−β

)
. (20)

Step 2: We give the mean-square convergence rate of
1
N 1TNz(k)− x?. From (11) it follows that

E
[

1

N
1TNz(k)− x?

]2
=

2
∑
i∈V c

2
i

N2

∞∑
j=k+1

α2(j)b2(j)

=O

 ∞∑
j=k+1

1

(j + a2)2β−2γ

 .

Note that γ < β − 1
2 and

∑∞
j=k+1

1
(j+a2)2β−2γ ≤∫∞

k
1

(x+a2)2β−2γ dx. Then, we have

E
[

1

N
1TNz(k)− x?

]2
= O

(
(k + a2)1+2γ−2β) . (21)

Step 3: We give the mean-square convergence rate of
Algorithm 1. Note that

E [xi(k)− six?]2

=E
[
sixi(k)− 1

N
1TNz(k) +

1

N
1TNz(k)− x?

]2
≤2E

[
sixi(k)− 1

N
1TNz(k)

]2
+2E

[
1

N
1TNz(k)−x?

]2
.(22)

Then, when β = 1, from (18), (21) and (22) it follows that
(15) holds; when 0 < β < 1, from (20), (21) and (22) it
follows that (14) holds. The proof is completed. �

In the following, we give the almost-sure convergence rate
of Algorithm 1 with α(k) = a1

(k+a2)β
and b(k) = O(kγ).

Theorem 3.6: Suppose Assumptions 2.1 and 3.2 hold. Let
the step-size α(k) = a1

(k+a2)β
, b(k) = O(kγ), β ∈ (0, 1],

γ < β − 1/2, a1, a2 > 0. Then, the almost-sure convergence
rate of Algorithm 1 is given as follows.
When β ∈ (0, 1), for any η ∈

(
1
4 ,

β/2−γ
1−β

)
and all i, j ∈ V ,

we have

sixi(k)− sjxj(k) = O
(
kγ+η−(η+1/2)β

)
, a.s. (23)

When β = 1, for all i, j ∈ V , we have

sixi(k)− sjxj(k)

=


O
(
kγ−1/2

√
ln ln k

)
, a1λ2(L)+γ>1/2;

O
(
kγ−1/2

√
ln k ln ln ln k

)
, a1λ2(L)+γ=1/2;

O
(
k−a1λ2(L)

)
, a1λ2(L)+γ<1/2.

a.s.

(24)

Proof : As clarified in Theorem 3.1, it is equivalent to calculate
the convergence rate of δ(k) = z(k)−Jz(k), where z(k) and
J are defined in Theorem 3.1.

Note that

‖δ(k)‖ = sup
‖v‖=1

|vT δ(k)|

= sup
p2‖e‖2+Nq2=1

eT 1=0

|(pe+ q1)T δ(k)|

= sup
p2‖e‖2+Nq2=1

eT 1=0

|peT z(k)|

= sup
‖e‖=1

eT 1=0

|eT z(k)|,

and there exists e1, . . . , eN−1 such that eTi ej = 0 for i 6= j,
‖ei‖ = 1 and eTi 1 = 0 for i = 1, 2, . . . , N −1. Then, we have

sup
‖e‖=1

eT 1=0

|eT z(k)| = sup∑N−1
i=1 p2i=1

N−1∑
i=1

|pi||eTi z(k)|

≤ sup∑N−1
i=1 p2i=1

√√√√N

N−1∑
i=1

|pi|2 max
i
|eTi z(k)|

=
√
N max

i
|eTi z(k)|.

Set

D̃ =
[
e1 · · · eN−1

]T
, D =

[
e1 · · · eN−1

1√
N

]T
.

Then, to calculate the convergence rate of δ(k), it suffices to
analyze that of D̃z(k).

From the properties of ei, we have DTD = IN . Let L̃ =
D̃LSD̃T . Then, DLSDT = diag(L̃, 0) and λmin(L̃) = λ2(L).

From α(k) = a1
(k+a2)β

and (6) it follows that

z(k + 1)

=

(
IN −

a1
(k + a2)β

LS
)
z(k) +

a1b(k)

(k + a2)β
SAω(k)

b(k)
.

Hence, we have

Dz(k + 1)

=

(
IN −

a1
(k + a2)β

DLSDT
)
Dz(k)

+
a1b(k)

(k + a2)β
DSAω(k)

b(k)

=

[
IN−1− a1

(k+a2)β
L̃ 0

0 1

]
Dz(k)+

a1b(k)

(k + a2)β
DSAω(k)

b(k)
,

which implies

D̃z(k + 1)

=

(
IN−1−

a1
(k + a2)β

L̃
)
D̃z(k)+

a1b(k)

(k + a2)β
D̃SAω(k)

b(k)
.
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Iterating the above equation results in

D̃z(k)

=

k−1∑
l=0

k−1∏
i=l+1

(
IN−1−

a1
(i+ a2)β

L̃
)

a1b(l)

(l + a2)β
D̃SAw(l)

b(l)

+

k−1∏
i=0

(
IN−1−

a1
(i+ a2)β

L̃
)
D̃z(0). (25)

Note that when 0 < β < 1, by Lemma A.2, we have

k−1∏
i=l+1

∥∥∥∥IN−1 − a1
(i+ a2)β

L̃
∥∥∥∥

≤
k−1∏
i=l+1

(
1− a1λ2(L)

(i+ a2)β

)
=O

(
exp

(
a1λ2(L)

1− β
(
(l + a2)1−β−(k + a2)1−β

)))
.(26)

According to the Lemma 2 in [47] and Lemma A.3, for any
η > 1

4 , we have

k−1∑
l=0

exp

(
a1λ2(L)

1− β
(l + a2)1−β

)
a1b(l)

(l + a2)β
D̃SAw(l)

b(l)

=O

(
k−1∑
l=0

exp

(
a1λ2(L)

1− β
(l + a2)1−β

)
a1D̃SA

(l + a2)β−γ
w(l)

b(l)

)

=O

(
exp

(
a1λ2(L)

1− β
(k + a2)1−β

)
(k + a2)γ+η−(η+1/2)β

)
,

a.s. (27)

Substituting (26) and (27) into (25) gives D̃z(k) =
O
(
kγ+η−(η+1/2)β

)
, a.s.

When β = 1, by Lemma A.2, we have

k−1∏
i=l+1

∥∥∥∥IN−1 − a1
i+ a2

L̃
∥∥∥∥ ≤ k−1∏

i=l+1

(
1− a1λ2(L)

i+ a2

)

=O

((
l + a2
k + a2

)a1λ2(L)
)
. (28)

According to the Lemma 2 in [47], one can get

1

(k + a2)a1λ2(L)

k−1∑
l=0

a1b(l)

(l + a2)1−a1λ2(L)
D̃SAw(l)

b(l)

=O

(
1

(k + a2)a1λ2(L)

k−1∑
l=0

a1D̃SA
(l + a2)1−γ−a1λ2(L)

w(l)

b(l)

)

=


O
(
kγ−1/2

√
ln ln k

)
, a1λ2(L) + γ > 1/2;

O
(
kγ−1/2

√
ln k ln ln ln k

)
, a1λ2(L) + γ = 1/2;

O
(
k−a1λ2(L)

)
, a1λ2(L) + γ < 1/2,

a.s.

(29)

Substituting (28) and (29) into (25) gives

D̃z(k)

=


O
(
kγ−1/2

√
ln ln k

)
, a1λ2(L) + γ > 1/2;

O
(
kγ−1/2

√
ln k ln ln ln k

)
, a1λ2(L) + γ = 1/2;

O
(
k−a1λ2(L)

)
, a1λ2(L) + γ < 1/2,

a.s.

This completes the proof. �
Remark 3.7: Theorems 3.5 and 3.6 show that the algorith-

m’s convergence rate will slow down when the privacy noise
parameter γ increases. This is because the increase of the
privacy noises enhances data randomness, and thus, worsens
the convergence rate of the algorithm.

Remark 3.8: In distributed systems, communication imper-
fections can be modeled as communication noises [7], [9]–
[11], and can be regarded as a special case of differential
privacy-noises considered here. Therefore, Algorithm 1 can
also be used to counteract communication imperfections in
distributed computation. The proof techniques of mean-square
and almost-sure convergence rates are fundamentally different
from existing counterparts (e.g. [7], [9]–[11]) and are of inde-
pendent interest in themselves. To the best of our knowledge,
even without considering privacy protection, it is the first to
rigorously characterize both the mean-square and almost-sure
convergence rates of distributed consensus with increasing
noises.

D. Privacy analysis

This subsection demonstrates that Algorithm 1 is ε-
differentially private on dataset D = {xi(0), i ∈ V}. Before
giving the privacy analysis, we first introduce the definition
of sensitivity. For a private dataset D and an observation
O = {yi(k), i ∈ V}Tk=0, there exists a sequence of noises
{ωi(k), i ∈ V}Tk=0 and trajectories ρ(D,O) = {xD,Oi (k), i ∈
V}Tk=0. Below we first give the sensitivity of Algorithm 1.

Definition 3.1 (Sensitivity): The sensitivity with respect to
a randomized mechanismM at time k ≥ 0 is given as follows.

S(k) = sup
D,D′∈D,O∈O

‖ρ(D,O)(k)− ρ(D′, O)(k)‖1.

Sensitivity is a measure of the difference of two trajectories
induced by changing the private dataset.

Theorem 3.7: Suppose Assumptions 2.1 and 3.2 hold.
Then, the sensitivity of Algorithm 1 satisfies

S(k) ≤
{
δ, k = 0;∏k−1
l=0 (1− α(l)cmin)δ, k ≥ 1.

(30)

Proof : Denote P = {ρ(D,O) : O ∈ O} and P ′ =
{ρ(D′, O) : O ∈ O} as the sets of possible trajectories under
the controller (3) w.r.t. D and D′ in the observation set O,
and the trajectories subject to the probability density functions
f(D, ρ(D,O)) and f(D′, ρ(D′, O)), respectively. Based on
the controller (3), we have

xD,Oi (k) =(1− α(k − 1)ci)x
D,O
i (k − 1)

+ α(k − 1)
∑
j∈Ni

|aij |sgn(aij)yj(k − 1).
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Similarly, for D′ we have

xD
′,O

i (k) =(1− α(k − 1)ci)x
D′,O
i (k − 1)

+ α(k − 1)
∑
j∈Ni

|aij |sgn(aij)yj(k − 1).

Since observations O = {yi(k − 1), i ∈ V} for D and D′ are
the same, we have

xD
′,O

i (k)− xD,Oi (k)

=(1− α(k − 1)ci)
(
xD
′,O

i (k − 1)− xD,Oi (k − 1)
)

=

k−1∏
l=0

(1− α(l)ci)
(
xD
′,O

i (0)− xD,Oi (0)
)
.

Thus, it follows that for k = 0

‖ρ(D,O)(k)− ρ(D′, O)(k)‖1
=
∑
i∈V

∣∣∣xD′,Oi (0)− xD,Oi (0)
∣∣∣ ≤ δ, (31)

which implies that S(0) ≤ δ, and for k ≥ 1

‖ρ(D,O)(k)− ρ(D′, O)(k)‖1
=
∑
i∈V

∣∣∣xD′,Oi (k)− xD,Oi (k)
∣∣∣

=
∑
i∈V

(
k−1∏
l=0

(1− α(l)ci)

)∣∣∣xD′,Oi (0)− xD,Oi (0)
∣∣∣

≤

(
k−1∏
l=0

(1− α(l)cmin)

)∑
i∈V

∣∣∣xD′,Oi (0)− xD,Oi (0)
∣∣∣

≤

(
k−1∏
l=0

(1− α(l)cmin)

)
δ. (32)

Thus, S(k) ≤
∏k−1
l=0 (1−α(l)cmin)δ for k ≥ 1. This completes

the proof. �
Next, we calculate the algorithm’s differential privacy lev-

el ε.
Theorem 3.8: Suppose Assumptions 2.1 and 3.2 hold.

Then, Algorithm 1 is ε-differentially private over the time
horizon T with

ε =

T∑
k=0

S(k)

b(k)
. (33)

Proof : Recall that P = {ρ(D,O) : O ∈ O} and P ′ =
{ρ(D′, O) : O ∈ O} are the sets of possible trajectories under
the controller (3) w.r.t. D and D′ in the observation set O,
and the trajectories subject to the probability density functions
f(D, ρ(D,O)) and f(D′, ρ(D′, O)), respectively. Then, it is
obtained that

P[M(D) ∈ O]

P[M(D′) ∈ O]
=

∫
ρ(D,O)∈P f (D, ρ(D,O)) dτ∫

ρ(D′,O)∈P′ f (D′, ρ(D′, O)) dτ ′
.

Let T = {0, 1, 2, . . . , T} and W = V × T . Then, the
probability density functions f(D, ρ(D,O)) over the time

horizon T are expressed as

f(D, ρ(D,O))

=
∏

i∈V, k∈T

f(D, ρ(D,O)i(k − 1))

=
∏

(i,k)∈W

1

2b(k)
exp

(
−|ρ(D,O)i(k)−yi(k)|

b(k)

)
. (34)

As they have the same observation over the time horizon T ,
there exists a bijection g(·):P → P ′, such that for any pair
of ρ(D,O) ∈ P and ρ(D′, O) ∈ P ′, it has g(ρ(D,O)) =
ρ(D′, O). From the rationale of yi(k) = xi(k) + ωi(k),
ωi(k) ∼ Lap(0, b(k)), and the observations O = {yi(k), i ∈
V}Tk=0, by (34) we have

P[M(D) ∈ O]

P[M(D′) ∈ O]

=

∫
ρ(D,O)∈P f (D, ρ(D,O)) dτ∫

g(ρ(D,O))∈P′ f (D′, g(ρ(D,O))) dτ

=

∫
ρ(D,O)∈P f (D, ρ(D,O)) dτ∫

ρ(D,O)∈P f (D′, g(ρ(D,O))) dτ

=
∏

(i,k)∈W

exp

(
−|ρ(D,O)i(k)− yi(k)|

b(k)

+
|ρ(D′, O)i(k)− yi(k)|

b(k)

)

≤
∏

(i,k)∈W

exp


∣∣∣xD′,Oi (k)− xD,Oi (k)

∣∣∣
b(k)

 ,

which together with (32) leads to
P[M(D) ∈ O]

P[M(D′) ∈ O]

= exp

∑
k∈T

∑
i∈V

∣∣∣xD′,Oi (k)− xD,Oi (k)
∣∣∣

b(k)


≤ exp

(
T∑
k=0

S(k)

b(k)

)
.

Hence, we can obtain that ε =
∑T
k=0

S(k)
b(k) . �

Remark 3.9: Theorem 3.8 shows that the differential pri-
vacy level ε is effected by the step-sizes α(k) and the noise
parameter b(k). According to (33), a larger α(k) implies a
smaller ε, which further implies a stronger privacy-preserving
ability. Similarly, a larger b(k) implies a smaller ε, which
further implies a stronger privacy-preserving ability.

Next, we focus on how to design the time-varying step-size
α(k) and the noise parameter b(k) to satisfy the predefined
ε?-differential privacy over the infinite time horizon.

Theorem 3.9: Suppose Assumptions 2.1 and 3.2 hold. Let
the step-size α(k) = a1

(k+a2)β
, b(k) = b(k+a2)γ , a1, a2, b > 0,

a1cmin + γ > 1. Then, for any given ε? > 0, Algorithm 1
achieves the ε?-differential privacy in the following four cases:
1) β = 1, γ ≥ 0, and

2δ

baγ2
+

δa1−γ2

b(a1cmin + γ − 1)
≤ ε?; (35)
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2) β = 1, γ < 0, and

2δ

b(1 + a2)γ
+

δ(1 + a2)−γa2
b(a1cmin + γ − 1)

≤ ε?; (36)

3) 0 < β < 1, γ ≥ 0, and

δ

baγ2
+
δ exp

(
a1cmin

1−β a1−β2

)
b(1− β)

(
1− β
a1cmin

) 1−γ
1−β

· Γ

(
1− γ
1− β

,
a1cmina

1−β
2

1− β

)
≤ ε?; (37)

4) 0 < β < 1, γ < 0, and

2δ

b(1 + a2)γ
+
δ exp

(
a1cmin

1−β a1−β2

)
b(1− β)

(
1−β
a1cmin

) 1−γ
1−β

· Γ
(

1− γ
1− β

,
a1cmin(1 + a2)1−β

1− β

)
≤ ε?. (38)

Proof : From Theorem 3.7 and substituting α(k) = a1
(k+a2)β

into (30), we have

S(k) ≤

{
δ, k = 0;∏k−1
l=0 (1− a1cmin

(l+a2)β
)δ, k ≥ 1.

Notice that S(0) = δ. Then, one can get

ε = sup
T
εT =

∞∑
k=0

S(k)

b(k)
=

δ

baγ2
+

∞∑
k=1

S(k)

b(k)
≤ ε?.

Thus, it suffices to analyze
∑∞
k=1

S(k)
b(k) . The following analysis

is undertaken according to four cases.
Case 1: β = 1 and γ ≥ 0.
From (30) and Lemma A.2 it follows that

∞∑
k=1

S(k)

b(k)
=

∞∑
k=1

∏k−1
l=0 (1− a1cmin

(l+a2)β
)δ

b(k)

≤
∞∑
k=1

δaa1cmin
2

b(k)(k − 1 + a2)a1cmin

≤ δ

b(1 + a2)γ
+

∫ ∞
1

δaa1cmin
2

b(x− 1 + a2)a1cmin+γ
dx

≤ δ

b(1 + a2)γ
+

δa1−γ2

b(a1cmin + γ − 1)
.

Case 2: β = 1 and γ < 0.
From (30) and Lemma A.2 it follows that

∞∑
k=1

S(k)

b(k)
≤
∞∑
k=1

δaa1cmin
2

b(k)(k − 1 + a2)a1cmin
.

Note that supx∈[1,∞)(
x+a2
x−1+a2 )−γ = ( 1+a2

a2
)−γ , for any γ < 0.

Then,
∞∑
k=1

S(k)

b(k)

≤ δ

b(1 + a2)γ
+ (

1 + a2
a2

)−γ
∫ ∞
1

δaa1cmin
2

b(x− 1 + a2)a1cmin+γ
dx

≤ δ

b(1 + a2)γ
+

δ(1 + a2)−γa2
b(a1cmin + γ − 1)

.

Case 3: 0 < β < 1 and γ ≥ 0.
From Lemma A.2 it follows that

∞∑
k=1

S(k)

b(k)
≤
∞∑
k=1

δ

b
(k + a2)−γ exp

(
a1cmin

1− β
a1−β2

− a1cmin

1− β
(k + a2)1−β

)
.

Further, when γ ≥ 0, by Lemma A.4, we have
∞∑
k=1

S(k)

b(k)

≤ exp

(
a1cmin

1− β
a1−β2

)∫ ∞
1

δ

b
(x+ a2 − 1)−γ

· exp

(
−a1cmin

1− β
(x+ a2 − 1)1−β

)
dx.

=
δ exp

(
a1cmin

1−β a1−β2

)
b(1− β)

(
1− β
a1cmin

) 1−γ
1−β

· Γ

(
1− γ
1− β

,
a1cmina

1−β
2

1− β

)
. (39)

Case 4: 0 < β < 1 and γ < 0.
From Lemma A.2 it follows that

∞∑
k=1

S(k)

b(k)
≤
∞∑
k=1

δ

b
(k + a2)−γ exp

(
a1cmin

1− β
a1−β2

− a1cmin

1− β
(k + a2)1−β

)
.

Set g(x) = (x+a2)−γ exp
(
−a1cmin

1−β (x+ a2)1−β
)
. Then, we

have

g′(x) = (x+ a2)−γ−1 exp

(
−a1cmin

1− β
(x+ a2)1−β

)
·
(
−γ − a1cmin(x+ a2)1−β

)
.

Note that a1cmin + γ > 1. Then, −γ − a1cmin(x+ a2)1−β <
−1, for any x ≥ 1, which implies that g(x) decreases
monotonically in [1,∞). Thus, by Lemma A.4, we can get

∞∑
k=2

(k + a2)−γ exp

(
−a1cmin

1− β
(k + a2)1−β

)
≤
∫ ∞
1

(x+ a2)−γ exp

(
−a1cmin

1− β
(x+ a2)1−β

)
dx

=
1

(1− β)

(
1− β
a1cmin

) 1−γ
1−β

Γ

(
1− γ
1− β

,
a1cmin(1 + a2)1−β

1− β

)
.

Thus, (38) holds. This completes the proof. �
Remark 3.10: Theorem 3.9 provides an upper bound of the

differential privacy level ε when the step-size α(k) and the
noise parameter b(k) are designed in a certain form. From
(30), (33) and (35)-(38), increasing β has the same effect as
decreasing γ on both the differential privacy level ε and the
obtained boundary. Moreover, it is known that ε decreases as γ
increases (or b, a2 increase). Similarly, the obtained boundary
decreases as γ increases (or b, a2 increase).

Remark 3.11: Since the step-size does not change S(0), ε >
δ
baγ2

is required regardless of the step-size. For any given ε? >
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δ
baγ2

, as long as a1 or b is sufficiently large, it can always be
ε ≤ ε?.

E. Trade-off between accuracy and privacy

From Theorems 3.5, 3.6 and 3.9, we observe that the
influence of the privacy noises on the convergence rate and
the privacy level of Algorithm 1 is different. Specifically,
when the privacy noise parameter γ increases, the convergence
rate of the algorithm will slow down, but the privacy of the
algorithm will be enhanced. This is because the increase of the
privacy noises enhances data randomness, leading to a worse
convergence rate and more robust privacy of the algorithm.
In the following, we give sufficient conditions for the mean-
square average bipartite consensus and differential privacy
with a finite privacy level ε over the infinite time horizon
simultaneously.

Corollary 3.2: Suppose Assumptions 2.1 and 3.2 hold. Let
the step-size α(k) = a1

(k+a2)β
, b(k) = b(k+a2)γ , a1, a2, b > 0.

If β ∈ (0, 1], γ < β − 1
2 and a1cmin + γ > 1, then the mean-

square average bipartite consensus and differential privacy
with a finite privacy level ε over the infinite time horizon can
be established simultaneously.
Proof : From Lemma A.2 it follows that

ε =
δ

baγ2
+

∞∑
k=1

∏k−1
l=0 (1− α(l)cmin)δ

b(k)

=
δ

baγ2
+

∞∑
k=1

∏k−1
l=0 (1− a1cmin

(k+a2)β
)δ

b(k + a2)γ
. (40)

If β ∈ (0, 1), then by Lemma A.2,
∏k−1
l=0 (1 − a1cmin

(k+a2)β
)

converges to 0 exponentially, which implies that ε is finite.
If β = 1, then by a1cmin + γ > 1 and Lemma A.2, ε is also
finite. This together with Theorem 3.5 proves the corollary. �

Remark 3.12: For any given (m?, r?, ε?), Theorems 3.4 and
3.9 provide a way to design the step-size α(k) and the noise
parameter b(k). From Corollary 3.2, as long as the parameters
β and γ satisfy β ∈ (0, 1], γ < β− 1

2 and a1cmin +γ > 1, the
feasible domain of the triplet (m?, r?, ε?) always exists. But
if both m?, r?, and ε? are required to be sufficiently small,
then there is no such β and γ because there is a trade-off
between the accuracy and the privacy of Algorithm 1. This is
consistent with the current literature’s results on differentially
private algorithms.

Remark 3.13: By (40), ε is inversely proportional to b. Note
that ε can be arbitrarily small if b is sufficiently large. Then,
any desired ε? can be obtained by adjusting b.

Remark 3.14: From Corollary 3.2, even if the variances of
the added noises increase, the mean-square average bipartite
consensus and differential privacy with a finite privacy level
ε over the infinite time horizon can still be established simul-
taneously. Hence, Algorithm 1 is effective for protecting the
infinite time sequences of the state with guaranteed conver-
gence, which is superior to the algorithms in [32], [39], [40],
[42]–[44].

F. Extension to local differential privacy

In practice, each agent wants to set its own privacy level.
In this scenario, the private dataset becomes Di = xi(0)
for any i. To achieve this goal, the different privacy noise
parameter bi(k) can be chosen. In this subsection, we give
the convergence and privacy analysis of Algorithm 1 with the
different privacy noise parameter. We first give the following
assumption on the step-size α(k) and the different noise
parameter bi(k).

Assumption 3.3: The step-size α(k) and the different noise
parameter bi(k) are positive and satisfy

sup
k
α(k) ≤ 1

λN (L)
,

∞∑
k=0

α(k) =∞,
∞∑
k=0

α2(k)b2i (k) <∞.

Theorem 3.10: Suppose Assumptions 2.1, 3.2, and 3.3
hold. Then, Algorithm 1 achieves the mean-square and
almost-sure average bipartite consensus with Var(x?) =
2
N2

∑∞
k=0

∑
i∈V α

2(k)c2i b
2
i (k). Furthermore, if

∞∑
k=0

∑
i∈V

α2(k)c2i b
2
i (k) ≤ m?(r?)2N2

2
,

then the (m?, r?)-accuracy is ensured.
Proof : The proof is similar to that of Theorems 3.1-3.3. And
thus, here we only present the main different parts as follows:
We replace (8) by

E[V (k + 1)|Fωk ]

≤
[
1− α(k)λ2(L)

]2
V (k) + 2

N∑
i=1

α2(k)b2i (k)‖A‖2.

By Lemma A.1, the mean-square and almost-sure average
bipartite consensus are proved. Further, we replace (12) by
Var(x?) = 2

N2

∑∞
k=0

∑
i∈V α

2(k)c2i b
2
i (k). The proof of the

(m?, r?)-accuracy is similar to Theorem 3.4. �
Remark 3.15: The same step-size α(k) is chosen for all

agents to achieve the average bipartite consensus. If different
step-sizes are chosen, then E[1TNz(k)] = E[1TNz(k−1)] cannot
hold in (10). In this case, it is difficult to ensure that Ex? =
1
N

∑N
i=1 sixi(0), which is necessary for the mean-square and

almost-sure average bipartite consensus.
Remark 3.16: Theorem 3.10 shows that the mean-square

and almost-sure average bipartite consensus of Algorithm 1
still holds under the appropriate assumptions on the different
privacy noise parameter. Different from the same privacy noise
parameter b(k) for all agents, the accuracy that depends on
each agent has changed. Even so, each agent cannot arbitrarily
choose its own m? and r?, because m? and r? are global
parameters. By Theorem 3.10, if the high accuracy is desired
for some agents while the high privacy is desired for others,
then the requirement for the high accuracy may not be met.

Next, we calculate the algorithm’s local differential privacy
level when each agent wants to set its own privacy level.

Theorem 3.11: Suppose Assumptions 2.1 and 3.2 hold.
Then, Algorithm 1 is εi-locally differentially private over the
time horizon T with εi =

∑T
k=0

S(k)
bi(k)

.
Proof : The proof is similar to that of Theorem 3.8.
And thus, here we only present the main different parts
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as follows: We replace
∑
i∈V

∣∣∣xD′,Oi (0)− xD,Oi (0)
∣∣∣ by∣∣∣xD′,Oi (0)− xD,Oi (0)

∣∣∣ in (31) and (32), f(D, ρ(D,O)) =∏
i∈V, k∈T f(D, ρ(D,O)i(k)) by fi(D, ρ(D,O)) =∏
k∈T f(D, ρ(D,O)i(k)) in (34). �
Remark 3.17: Based on Theorem 3.11, each agent can set

its own privacy level εi by properly choosing the privacy noise
parameter bi(k). Specifically, if a stronger privacy-preserving
ability is desired for each agent, then a larger bi(k) should
be chosen, which further implies the worse accuracy of the
algorithm. This reveals the trade-off between accuracy and
privacy.

IV. NUMERICAL EXAMPLE

This section considers discrete-time MASs of five agents
coupled by the communication graph illustrated in Fig. 1. In
this example, we set δ = 0.1 and aim to achieve bipartite con-
sensus with the (m?, r?)-accuracy and ε?-differential privacy,
where m? = 0.44, r? = 3, and ε? = 1.2.

First, for the communication topology (a) in Fig. 1, we set
the step-size as α(k) = 1/(k+1). Compared with the decaying
variance case with b(k) = 0.9k in [43], [44], we employ the
proposed controller (3) using the increasing variances of the
privacy noises (2) with b(k) = (k + 1)0.1. The corresponding
results are depicted in Fig. 2 (a) and (b), respectively, where
the trajectories of x(k) and y(k) are displayed. The former
figures in Fig. 2 (a) and (b) reveals that both algorithms of
this paper and [43], [44] converge. The latter figures in Fig. 2
(a) and (b) reveals that y(k) utilizing Algorithm 1 is random,
while the corresponding y(k) utilizing the algorithm of [43],
[44] converges.

Second, for distributed consensus with unsigned graph
(S = I), i.e., the communication topology (b) in Fig. 1, the
comparison between Algorithm 1 and [32], [39] is illustrated
in Fig. 3 (a) and (b), respectively. The former figure in Fig.
3 (a) and (b) also reveals that both algorithms of this paper
and [32], [39] converge. The latter figure in Fig. 3 (a) and (b)
also reveals that y(k) utilizing Algorithm 1 is random, while
the corresponding y(k) utilizing the algorithm of [32], [39]
converges.

Based on the above analysis, Fig. 2 and 3 highlight that
Algorithm 1 has better privacy protection with guaranteed
convergence compared with [32], [39], [43], [44].

Finally, we set a1 = a2 = 1 and use the communication
topology (a) in Fig. 1 with cmin = 1. The relationship of ε
and γ, β is given in Fig. 4, which shows that the larger γ
is, the smaller ε is. Based on Theorem 3.5, we set β = 0.8.
The mean-square convergence rate with different γ is given
in Fig. 5, which shows that the larger γ is, the slower the
algorithm’s convergence rate is. This is consistent with the
theoretical analysis.

V. CONCLUSION

This paper develops a new differentially private bipartite
consensus algorithm over signed networks. We relax the
selection of privacy noises in the existing mechanisms, such
that the variances of the privacy noises are time-varying
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Fig. 1: Communication topology
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Fig. 2: Comparison of Algorithm 1 with the existing
differential privacy approach in [43], [44]

and allowed to increase with time. By using the stochastic
approximation method, the proposed algorithm achieves the
mean-square and almost-sure average bipartite consensus, and
at the same time, protects the initial value of each agent.
Furthermore, we develop a method to design the time-varying
step-size and the noise parameter to guarantee the desired
consensus accuracy and predefined differential privacy level.
We also give the mean-square and almost-sure convergence
rates of the algorithm. Finally, we reveal the trade-off between
the accuracy and privacy of the algorithm, and extend the
results to local differential privacy. It is worth mentioning that
many interesting topics deserve further investigation, including
differentially private consensus-based optimization over signed
networks and realizing privacy security for MASs under active
adversaries.
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Fig. 3: Comparison of Algorithm 1 with the existing
differential privacy approach in [32], [39]
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APPENDIX A. LEMMAS

Lemma A.1 ([48]): Let Vk, uk, βk, ζk be non-negative
random variables. If

∑∞
k=0 uk < ∞,

∑∞
k=0 βk < ∞, and

E[Vk+1|Fk] ≤ (1 + uk)Vk − ζk + βk for all k ≥ 0,
then Vk converges almost surely and

∑∞
k=0 ζk < ∞ almost

surely. Here E[Vk+1|Fk] denotes the conditional mathematical
expectation for the given V0, . . . , Vk, u0, . . . , uk, β0, . . . , βk,
ζ0, . . . , ζk.

Lemma A.2: For 0 < β ≤ 1, α > 0, k0 ≥ 0 and
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Fig. 5: The mean-square convergence rate with β = 0.8 and
different γ

sufficiently large l, we have
k∏
i=l

(
1− α

(i+ k0)β

)

≤


(
l+k0
k+k0

)α
, β = 1;

exp
(

α
1−β

(
(l+k0)1−β−(k+k0+1)1−β

))
, β ∈ (0, 1).

(A.1)

If we further assume that β > 1/2, then for any γ > 0, we
have
k∏
i=l

(
1− α

(i+ k0)β
+

γ

(i+ k0)2β

)

=

O
((

l+k0
k+k0

)α)
, β = 1;

O
(
exp
(
α

1−β
(
(l+k0)1−β−(k+k0+1)1−β

)))
, β ∈(1/2, 1).

(A.2)
Proof : By ln(1− x) ≤ −x, ∀x ∈ (0, 1), for sufficiently large
l, we have

k∏
i=l

(
1− α

(i+ k0)β

)
= exp

(
k∑
i=l

ln

(
1− α

(i+ k0)β

))

≤ exp

(
−

k∑
i=l

α

(i+ k0)β

)
.

Note that f(x) = α
x+k0

with α > 0 is a strictly decreasing
function for x > 0. Then, when β = 1, we have

exp

(
−

k∑
i=l

α

i+ k0

)
≤ exp

(
−
∫ k

l

α

x+ k0
dx

)
= exp (α ln(l + k0)− α ln(k + k0))

=

(
l + k0
k + k0

)α
.

When β < 1, from (35) in [41] it follows that

exp

(
−

k∑
i=l

α

(i+ k0)β

)

≤ exp

(
α

1− β
(
(l + k0)1−β − (k + k0 + 1)1−β

))
.
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This completes the proof of (A.1).
Note that
k∏
i=l

(
1− α

(i+ k0)β
+

γ

(i+ k0)2β

)

=

k∏
i=l

(
1− α

(i+ k0)β

) k∏
i=l

(
1 +O

(
1

(i+ k0)2β

))
. (A.3)

Since β > 1/2, by Theorem 2.1.3 of [49], we have
supl,k

∏k
i=l

(
1 +O

(
1

(i+k0)2β

))
< ∞, which together with

(A.1) and (A.3) implies (A.2). �
Lemma A.3: For any given c, k0 ≥ 0, 0 < p ≤ 1, and

q ∈ R, we have
∑k
l=1

exp(c(l+k0)
p)

(l+k0)q
= O

(
exp(c(k+k0)

p)
(k+k0)p+q−1

)
.

Proof : Note that
k∑
l=1

(l + k0)p−1 exp (c(l + k0)p)

=O

(∫ k+k0

1+k0

tp−1 exp(ctp)dt

)
=O (exp (c(k + k0)p)) .

Then, using the Abel’s transformation (see (6.29) in [50]), we
have

k∑
l=1

exp (c(l + k0)p)

(l + k0)q

=

(
k∑
i=1

exp (c(i+ k0)p)

(i+ k0)1−p

)
1

(k + k0)p+q−1

+

k−1∑
l=1

(
l∑
i=1

exp (c(i+ k0)p)

(i+ k0)1−p

)

·
(

1

(l + k0)p+q−1
− 1

(l + k0 + 1)p+q−1

)
=O

(
exp (c(k + k0)p)

(k + k0)p+q−1

)
+O

(
k∑
l=1

exp (c(l + k0)p)

(l + k0)p+q

)
,

which together with

O

(
k∑
l=1

exp (c(l + k0)p)

(l + k0)p+q

)
= o

(
k∑
l=1

exp (c(l + k0)p)

(l + k0)q

)
implies the lemma. �

Lemma A.4: For γ < 1, 0 < β < 1, ν > 0, we have∫ ∞
1

x−γ exp
(
−νx1−β

)
dx =

ν−
1−γ
1−β

1− β
Γ

(
1− γ
1− β

, ν

)
,

where Γ(·, ·) is the upper incomplete gamma function.
Proof : Denote t = νx1−β . Then, we have dt = ν(1 −

β)x−βdx, and ∫ ∞
1

x−γ exp
(
−νx1−β

)
dx

=

∫ ∞
ν

1

ν(1− β)

(
t

ν

) 1−γ
1−β−1

e−tdt

=
ν−

1−γ
1−β

1− β
Γ

(
1− γ
1− β

, ν

)
.

This proves the lemma. �
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